Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 468
1.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Article En | MEDLINE | ID: mdl-38746044

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621906

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Brain Ischemia , Drugs, Chinese Herbal , Reperfusion Injury , Rats , Animals , Microglia/metabolism , Gliosis/pathology , Rats, Sprague-Dawley , Hyperplasia , Interleukin-4 , Interleukin-6 , Neurocan , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Infarction, Middle Cerebral Artery , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
3.
Front Immunol ; 15: 1303259, 2024.
Article En | MEDLINE | ID: mdl-38660298

Objectives: This study aimed to examine the effectiveness of the best response rate (BRR) as a surrogate for overall survival (OS), using the modified Response Evaluation Criteria in Solid Tumors (mRECIST), in patients with unresectable hepatocellular carcinoma (HCC) undergoing hepatic arterial infusion chemotherapy (HAIC) with fluorouracil, leucovorin, and oxaliplatin (FOLFOX) combined with molecular targeting and immunotherapy. Methods: This study enrolled 111 consecutive patients who had complete imaging data. The median age of patients was 58 years (IQR 50.5-65.0). Among the patients, those with Barcelona Clinic Liver Cancer (BCLC) stage A, BCLC stage B, and BCLC stage C comprised 6.4%, 19.1%, and 73.6%, respectively. The optimal threshold of BRR can be determined using restricted cubic splines (RCS) and the rank sum statistics of maximum selection. Survival curves of patients in the high rating and low rating groups were plotted. We then used the change-in-estimate (CIE) method to filter out confounders and the inverse probability of treatment weighting (IPTW) to balance confounders between the two groups to assess the robustness of the results. Results: The median frequency of the combination treatment regimens administered in the overall population was 3 times (IQR 2.0-3.0). The optimal BRR truncation value calculated was -0.2. Based on this value, 77 patients were categorized as the low rating group and 34 as the high rating group. The differences in the OS between the high and low rating groups were statistically significant (7 months [95%CI 6.0-14.0] vs. 30 months [95%CI 30.0-]; p< 0.001). Using the absolute 10% cut-off value, the CIE method was used to screen out the following confounding factors affecting prognosis: successful conversion surgery, baseline tumor size, BCLC stage, serum total bilirubin level, number of interventional treatments, alpha-fetoprotein level, presence of inferior vena cava tumor thrombus, and partial thrombin activation time. The survival curve was then plotted again using IPTW for confounding factors, and it was found that the low rating group continued to have better OS than the high rating group. Finally, the relationship between BRR and baseline factors was analyzed, and inferior vena cava tumor thrombus and baseline tumor size correlated significantly with BRR. Conclusions: BRR can be used as a surrogate endpoint for OS in unresectable HCC patients undergoing FOLFOX-HAIC in combination with molecular targeting and immunotherapy. Thus, by calculating the BRR, the prognosis of HCC patients after combination therapy can be predicted. Inferior vena cava tumor thrombus and baseline tumor size were closely associated with the BRR.


Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Fluorouracil , Immunotherapy , Infusions, Intra-Arterial , Leucovorin , Liver Neoplasms , Humans , Middle Aged , Male , Female , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/mortality , Aged , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Immunotherapy/methods , Treatment Outcome , Molecular Targeted Therapy , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/therapeutic use , Hepatic Artery
4.
Adv Mater ; : e2402445, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38583077

Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.

5.
Front Oncol ; 14: 1357145, 2024.
Article En | MEDLINE | ID: mdl-38567148

Objective: To investigate the value of predicting axillary lymph node (ALN) metastasis based on intratumoral and peritumoral dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinico-radiological characteristics in breast cancer. Methods: A total of 473 breast cancer patients who underwent preoperative DCE-MRI from Jan 2017 to Dec 2020 were enrolled. These patients were randomly divided into training (n=378) and testing sets (n=95) at 8:2 ratio. Intratumoral regions (ITRs) of interest were manually delineated, and peritumoral regions of 3 mm (3 mmPTRs) were automatically obtained by morphologically dilating the ITR. Radiomics features were extracted, and ALN metastasis-related radiomics features were selected by the Mann-Whitney U test, Z score normalization, variance thresholding, K-best algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. Clinico-radiological risk factors were selected by logistic regression and were also used to construct predictive models combined with radiomics features. Then, 5 models were constructed, including ITR, 3 mmPTR, ITR+3 mmPTR, clinico-radiological and combined (ITR+3 mmPTR+ clinico-radiological) models. The performance of models was assessed by sensitivity, specificity, accuracy, F1 score and area under the curve (AUC) of receiver operating characteristic (ROC), calibration curves and decision curve analysis (DCA). Results: A total of 2264 radiomics features were extracted from each region of interest (ROI), 3 and 10 radiomics features were selected for the ITR and 3 mmPTR, respectively. 5 clinico-radiological risk factors were selected, including lesion size, human epidermal growth factor receptor 2 (HER2) expression, vascular cancer thrombus status, MR-reported ALN status, and time-signal intensity curve (TIC) type. In the testing set, the combined model showed the highest AUC (0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%) among the 5 models. DCA showed that it had the greatest net clinical benefit compared to the other models. Conclusion: The intra- and peritumoral radiomics models based on DCE-MRI could be used to predict ALN metastasis in breast cancer, especially for the combined model with clinico-radiological characteristics showing promising clinical application value.

6.
Clin Cancer Res ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578683

PURPOSE: Current NCCN guidelines recommend afatinib or osimertinib as the preferred first-line treatment strategy for patients with advanced NSCLC harboring EGFR p.G719X mutation. However, in the absence of head-to-head trials comparing afatinib with osimertinib in EGFR p.G719X mutant patients, it is unclear which regimen is the preferred treatment option. EXPERIMENTAL DESIGN: A large cohort of 4228 treatment-naïve patients with lung cancer who underwent targeted NGS testing was screened for EGFR p.G719X mutation. A multicenter cohort involving 68 EGFR p.G719X-mutant patients with advanced NSCLC and NGS profiling was retrospectively enrolled to evaluate clinical responses to afatinib(n=37) and the third-generation EGFR-TKIs(n=31). Ba/F3 cells stably expressing the EGFR p.G719A mutation were created to investigate the response to EGFR-TKIs in vitro. RESULTS: Concurrent EGFR p.E709X mutations, being the most frequent co-occurring EGFR mutation in EGFR p.G719X-mutant NSCLC(~30%), exerted a detrimental effect on outcomes in patients treated with third-generation EGFR-TKI(G719X/E709X vs. G719X; ORR:0.00% vs. 47.62%, P<0.001; mPFS:7.18 vs. 14.2 months, P=0.04; respectively). Conversely, no significant difference was found in the treatment efficacy of afatinib between EGFR p.G719X/E709X and EGFR p.G719X patients(G719X/E709X vs. G719X; ORR:71.43% vs. 56.67%, P=0.99; mPFS:14.7 vs. 15.8 months, P=0.69; respectively). In vitro experiments elucidated a resistant drug sensitivity and poor inhibition of EGFR phosphorylation in Ba/F3 cells expressing EGFR p.G719A/E709K mutation upon the third-generation EGFR-TKIs treatment. CONCLUSION: Co-occurring EGFR p.E709X mutation mediates primary resistance to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients but remained sensitive to afatinib. A personalized treatment strategy should be undertaken based on the co-existing EGFR p.E709X mutation status.

7.
Lung Cancer ; 190: 107528, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461768

INTRODUCTION: The literature on de novo EGFRT790M-mutant patients diagnosed with lung cancer is limited, and there is currently no consensus concerning the most effective treatment protocols. This study aimed to investigate the genomic characteristics of de novoEGFRT790M-mutant non-small cell lung cancer (NSCLC) and provide insights into its clinical response and resistance mechanism to third-generation EGFR-TKIs. METHODS: Next-generation sequencing was utilized to screen a substantial cohort of 4,228 treatment-naïve patients from the Mygene genomic database to identifythe de novo EGFR-T790M mutation. Meanwhile, we recruited 83 individuals diagnosed with lung cancer who harbored de novo EGFRT790M mutation in the real world. In addition, 166 patients who acquired EGFR-T790M mutation after becoming resistant to first- or second-generation EGFR-TKIs were included as a comparison cohort. RESULTS: De novo EGFRT790M mutation identified by next-generation sequencing is rare (∼1.3 %) in Chinese lung cancer patients. The relative variant allele frequency (VAF) of de novo EGFRT790M mutation was either comparable to or significantly lower than those of EGFR-activating mutations. Patients with de novo-T790M mutations exhibited less favorable clinical outcomes when administered third-generation EGFR-TKIs as first-line therapy thanthose with 19del mutationsdue to a high overlap rate in EGFR p.L858R mutation. In patients with a de novo EGFRT790M mutation, no correlation was observed between T790M clonality and treatment outcomes with third-generation EGFR-TKIs. In contrast, the sub-clonality of the T790M mutation detrimentally affected the third-generation EGFR-TKI treatment efficacy in patients with acquired T790M mutation. Potential resistance mechanisms of third-generation EGFR TKIs in NSCLC patients with de novo or acquired EGFRT790M mutations included EGFR p.C797S in cis or EGFR p.E709X mutation, as well as activation of bypass pathways. CONCLUSIONS: The present study characterized the uncommon but unique de novo EGFRT790M-mutant NSCLC and laid a foundation for designing future clinical trials in the setting of uncommon EGFR mutation.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
9.
Int J Surg ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549223

BACKGROUND: Skin tumors affect many people worldwide, and surgery is the first treatment choice. Achieving precise preoperative planning and navigation of intraoperative sampling remains a problem and is excessively reliant on the experience of surgeons, especially for Mohs surgery for malignant tumors. MATERIALS AND METHODS: To achieve precise preoperative planning and navigation of intraoperative sampling, we developed a real-time augmented reality (AR) surgical system integrated with artificial intelligence (AI) to enhance three functions: AI-assisted tumor boundary segmentation, surgical margin design, and navigation in intraoperative tissue sampling. Non-randomized controlled trials were conducted on manikin, tumor-simulated rabbits, and human volunteers in xxx Laboratory to evaluate the surgical system. RESULTS: The results showed that the accuracy of the benign and malignant tumor segmentation were 0.9556 and 0.9548, respectively, and the average AR navigation mapping error was 0.644 mm. The proposed surgical system was applied in 106 skin tumor surgeries, including intraoperative navigation of sampling in 16 Mohs surgery cases. Surgeons who have used this system highly recognize it. CONCLUSIONS: The surgical system highlighted the potential to achieve accurate treatment of skin tumors and to fill the gap in global research on skin tumor surgery systems.

10.
BMC Complement Med Ther ; 24(1): 121, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486172

BACKGROUND: Drug-induced interstitial lung disease (DIILD) is a severe adverse event leading to morbidity and mortality. This study evaluated the adverse event indicators of DIILD and time-to-onset profiles following the daily intake of herbal drugs (Scutellariae radix ["ogon" in Japanese], Bupleuri radix ["saiko" in Japanese], and Pinelliae tuber ["hange" in Japanese]) using the Japanese Adverse Drug Event Report database. DIILD was defined in accordance with the Medical Dictionary for Regulatory Activities. METHODS: The Japanese Adverse Drug Event Report database contained 830,079 reports published between April 2004 and April 2023. The association between herbal medicines and DILLD was evaluated using the pharmacovigilance index as the reporting odds ratio (ROR), logistic regression models, propensity score-matching techniques, and Weibull shape parameters. RESULTS: The adjusted RORs using multivariate logistic regression models for Scutellariae radix (daily intake), Pinelliae tuber (daily intake), sex (male), age (≥ 60 years), Scutellariae radix (daily intake)*age (≥ 60 years), and Scutellariae radix (daily intake)* Pinelliae tuber (daily intake) were 1.47 (1.36 - 1.59), 1.05 (1.01 - 1.10), 1.45 (1.34 - 1.57), 1.92 (1.74 - 2.11), 3.35 (3.12 - 3.60), and 1.49 (1.46 - 1.53), respectively. DIILD onset profiles were evaluated using the Weibull shape parameter. A logistic plot of daily intake and onset of DIILD was drawn. ROR signals were detected in 32 of 54 herbal medicines, including Scutellariae radix, Bupleuri radix, and Pinelliae tuber. The median duration (days) (interquartile range) to DIILD onset was 36.0 (27.0-63.0) for Saikokaryukotsuboreito, 35.0 (21.0-55.0) for Saireito, and 31.0 (13.5-67.5) for Shosaikoto. The Weibull shape parameter beta (95% confidence interval) values for Saikokaryukotsuboreito, Saireito, and Shosaikoto were 1.36 (1.08-1.67), 1.36 (1.20-1.52), and 1.31 (0.98-1.68), respectively. CONCLUSIONS: DIILD demonstrated a dose-dependent to crude drugs. Clinicians should strive for the early detection of DIILD and avoid the inadvertent administration of herbal medicines.


Drug-Related Side Effects and Adverse Reactions , Lung Diseases, Interstitial , Plants, Medicinal , Japan/epidemiology , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/epidemiology , Humans , Male , Female , Middle Aged
11.
J Thorac Oncol ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38553005

INTRODUCTION: EGFR-mutated NSCLC is characterized by an immunosuppressive microenvironment that confers limited clinical effectiveness to anti-PD-1 or PD-L1 antibodies. Despite the discouraging outcomes of immunotherapy, novel immune checkpoints are constantly emerging, among which the specific vulnerability for therapeutic intervention in the context of EGFR-mutated NSCLC remains unresolved. METHODS: Data sets of patient- and cell line-levels were used for screening and mutual validation of association between EGFR mutation and a panel of immune checkpoint-related genes. Regulatory mechanism was elucidated through in vitro manipulation of EGFR signaling pathway and evaluated by immunoblot analysis, quantitative polymerase chain reaction, flow cytometry, immunofluorescence staining, and chromatin immunoprecipitation. In vivo investigation of different therapeutic strategies were conducted using both immunocompetent and immunodeficient mouse models. RESULTS: Among all screened immune checkpoints, CD47 emerged as the candidate most relevant to EGFR activation. Mechanistically, EGFR mutation constitutively activated downstream ERK and AKT pathways to respectively up-regulate the transcriptional factors c-Myc and NF-κB, both of which structurally bound to the promotor region of CD47 and actively transcribed this "don't eat me" signal. Impaired macrophage phagocytosis was observed on introduction of EGFR-sensitizing mutations in NSCLC cell line models, whereas CD47 blockade restored the phagocytic capacity and augmented tumor cell killing in both in vitro and in vivo models. Remarkably, the combination of anti-CD47 antibody with EGFR tyrosine kinase inhibitor revealed an additive antitumor activity compared with monotherapy of either antitumor agent in both immunocompetent and adaptive immunity-deficient mouse models. CONCLUSIONS: EGFR-sensitizing mutation facilitates NSCLC's escape from innate immune attack through up-regulating CD47. Combination therapy incorporating CD47 blockade holds substantial promise for clinical translation in developing more effective therapeutic approaches against EGFR-mutant NSCLC.

12.
Biophys J ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38444159

Electrostatic calculations are generally used in studying the thermodynamics and kinetics of biomolecules in solvent. Generally, this is performed by solving the Poisson-Boltzmann equation on a large grid system, a process known to be time consuming. In this study, we developed a deep neural network to predict the decomposed solvation free energies and forces of all atoms in a molecule. To train the network, the internal coordinates of the molecule were used as the input data, and the solvation free energies along with transformed atomic forces from the Poisson-Boltzmann equation were used as labels. Both the training and prediction tasks were accelerated on GPU. Formal tests demonstrated that our method can provide reasonable predictions for small molecules when the network is well-trained with its simulation data. This method is suitable for processing lots of snapshots of molecules in a long trajectory. Moreover, we applied this method in the molecular dynamics simulation with enhanced sampling. The calculated free energy landscape closely resembled that obtained from explicit solvent simulations.

13.
Int J Biol Macromol ; 266(Pt 2): 131112, 2024 May.
Article En | MEDLINE | ID: mdl-38537863

In this work, the modified­sodium alginate gel beads were prepared by sol-gel method. Due to the presence of water channels in the sodium alginate gel bead, amidoxime groups and PO43- were exposed to the surface of the adsorbent to the maximum extent, resulting in the excellent adsorption capacity of modified­sodium alginate gel beads. The introduction of amidoxime-modified hydroxyapatite significantly improved the adsorption capacity and the adsorption rate of the gel beads. The adsorption capacity increased from 308.7 to 466.0 mg/g and the adsorption equilibrium time was shortened from 300 min to 120 min. The modified­sodium alginate gel bead possessed the advantages of short adsorption time, high adsorption efficiency and large adsorption capacity, which could be regarded as a potential adsorbent for uranium. Moreover, the uranium removal ability on the modified gel beads was mainly attributed to the Coulomb force between PO43- and uranium and the complexation between uranium and amidoxime groups. In summary, this work would provide a new idea for the modification and application of sodium alginate-based materials.


Alginates , Durapatite , Gels , Oximes , Uranium , Alginates/chemistry , Uranium/chemistry , Uranium/isolation & purification , Adsorption , Durapatite/chemistry , Oximes/chemistry , Gels/chemistry , Microspheres , Kinetics , Hydrogen-Ion Concentration
14.
Curr Med Sci ; 44(1): 187-194, 2024 Feb.
Article En | MEDLINE | ID: mdl-38300426

OBJECTIVE: Premature rupture of membranes (PROM) is a common pregnancy disorder that is closely associated with structural weakening of fetal membranes. Studies have found that formyl peptide receptor 1 (FPR1) activates inflammatory pathways and amniotic epithelialmesenchymal transition (EMT), stimulates collagen degradation, and leads to membrane weakening and membrane rupture. The purpose of this study was to investigate the anti-inflammatory and EMT inhibitory effects of FPR1 antagonist (BOC-MLF) to provide a basis for clinical prevention of PROM. METHODS: The relationship between PROM, FPR1, and EMT was analyzed in human fetal membrane tissue and plasma samples using Western blotting, PCR, Masson staining, and ELISA assays. Lipopolysaccharide (LPS) was used to establish a fetal membrane inflammation model in pregnant rats, and BOC-MLF was used to treat the LPS rat model. We detected interleukin (IL)-6 in blood from the rat hearts to determine whether the inflammatory model was successful and whether the anti-inflammatory treatment was effective. We used electron microscopy to analyze the structure and collagen expression of rat fetal membrane. RESULTS: Western blotting, PCR and Masson staining indicated that the expression of FPR1 was significantly increased, the expression of collagen was decreased, and EMT appeared in PROM. The rat model indicated that LPS caused the collapse of fetal membrane epithelial cells, increased intercellular gaps, and decreased collagen. BOC-MLF promoted an increase in fetal membrane collagen, inhibited EMT, and reduced the weakening of fetal membranes. CONCLUSION: The expression of FPR1 in the fetal membrane of PROM was significantly increased, and EMT of the amniotic membrane was obvious. BOC-MLF can treat inflammation and inhibit amniotic EMT.


Amnion , Lipopolysaccharides , Pregnancy , Female , Humans , Animals , Rats , Amnion/metabolism , Lipopolysaccharides/pharmacology , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Collagen/metabolism , Anti-Inflammatory Agents , Epithelial-Mesenchymal Transition
15.
Materials (Basel) ; 17(4)2024 Feb 06.
Article En | MEDLINE | ID: mdl-38399024

When backfilling narrow spaces, controlled low-strength materials (CLSM) can be used to achieve an effective backfilling effect. The pipeline engineering in Yahnghe Avenue of Suqian, China, provides a favorable on-site condition for the use of CLSM. However, no guidance exists for the determination of the material mixture ratio of CLSM for this geological condition. Laboratory tests were performed to investigate the basic physical parameters of excavated soil and the optimal mixture ratio of CLSM. Results indicate that the sand and silt account for 29.76% and 57.23% of the weight of excavated soil, respectively. As the water content increases (from 40% to 50%), the flowability of the CLSM approximately shows a linear increase (slumps values from 154.3 mm to 269.75 mm for 9% cement content), while its compressive strength shows a linear decreasing trend (from 875.3 KPa to 468.3 KPa after curing for 28 days); as the cement content increases (from 6% to 12%), the flowability approximately shows a linear decreasing trend (from 238.8 mm to 178.5 mm for 45% water content), while the compressive strength shows a linear increasing trend (from 391.6 KPa to 987.6 KPa after curing for 28 days). By establishing the relationship between compressive strength/flowability and the water-cement ratio, the optimal material ratio is determined to be 9% cement content and 40-43% water content. The engineering application results indicate that the use of CLSM can achieve efficient and high-quality backfilling effects for pipeline trenches. The findings of this research may provide a reference for the application of CLSM in fields with similar geological conditions.

16.
J Vasc Access ; : 11297298241228816, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346929

BACKGROUND: Dialysis nurses play a pivotal role in the management of vascular access (VA), physician-patient liaison, and patient education for hemodialysis patients. This multicenter study aims to review the dialysis nurses' knowledge, attitude, practice, and self-efficacy toward providing care for patients' VA. METHODS: A multi-centered study was conducted using a self-administered survey. Nurses from 47 Singapore dialysis centers (five hospital-based and 42 community-based) providing hemodialysis were invited to participate on a voluntary and anonymous basis from April to November 2022. The survey consists of nurses' knowledge on VA (10 items), attitude on VA care (six items), usual practices (seven items), and self-efficacy in VA cannulation and management (six items). The total scores for the knowledge, attitude, and self-efficacy components were 50, 30, and 30 respectively. The instrument has been validated in a pilot study. RESULTS: In total, five hundred sixteen dialysis nurses participated the survey. The mean (±SD) knowledge score of the participants toward VA care was 30.0 (±8.1) over a total score of 50. The means (±SD) of their attitude and self-efficacy scores were 24.4 (±4.1) and 24.2 (±3.1) over 30 respectively. The majority of the nurses (84.1% in hospital-based centers and 98.9% in community-based centers) conducted patient education in some aspects of VA care. The percentage of nurses indicated need for referral to access specialists due to various abnormalities varied significantly between the hospital-based and community-based settings. In the multivariable linear regression analysis, longer working experience was a significant factor for higher knowledge score (B = 0.26; p = 0.001), attitude score (B = 0.08; p = 0.01), and self-efficacy score (B = 0.34; p < 0.001). CONCLUSION: Dialysis nurses in Singapore have satisfactory knowledge, practice, and self-efficacy on VA care. The majority of them expressed positive opinions toward the VA-related training they received, new technologies, and communications. The identified knowledge and practice gaps could be incorporated into the future training programs.

17.
J Control Release ; 368: 607-622, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423472

Ischemia-reperfusion injury is caused by excessive production of reactive oxygen species (ROS) and inflammation accompanied by ischemic injury symptoms and blood-brain barrier (BBB) dysfunction. This causes neuronal damage, for which no effective treatments or drugs exist. Herein, we provided a stepwise targeted drug delivery strategy and successfully prepared multifunctional ORD@SHp@ANG nanoparticles (NPs) that consist of a stroke homing peptide (DSPE-PEG2000-SHp), BBB-targeting peptide (DSPE-PEG2000-ANG), and ROS-responsive Danshensu (salvianic acid A) chain self-assembly. ORD@SHp@ANG NPs effectively crossed the BBB by ANG peptide and selectively targeted the ischemic brain sites using stroke-homing peptide. The results showed that ORD@SHp@ANG NPs can effective at scavenging ROS, and protect SH-SY5Y cells from oxidative damage in vitro. Furthermore, ORD@SHp@ANG NPs showed excellent biocompatibility. These NPs recognized brain endothelial cells and crossed the BBB, regulated the transformation of microglia into the anti-inflammatory phenotype, and inhibited the production of inflammatory factors in a rat ischemia-reperfusion model, thereby reducing cerebral infarction, neuronal apoptosis and preserving BBB integrity. Sequencing revealed that ORD@SHp@ANG NPs promote cell proliferation, activate immune responses, suppress inflammatory responses, and ameliorate ischemic stroke. In conclusion, this study reports a simple and promising drug delivery strategy for managing ischemic stroke.


Brain Ischemia , Ischemic Stroke , Neuroblastoma , Reperfusion Injury , Stroke , Rats , Humans , Animals , Brain Ischemia/drug therapy , Reactive Oxygen Species , Endothelial Cells , Stroke/drug therapy , Blood-Brain Barrier , Oxidative Stress , Peptides/pharmacology , Inflammation/drug therapy , Reperfusion Injury/drug therapy , Infarction, Middle Cerebral Artery/drug therapy
18.
Small ; : e2309302, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38372497

Metal-organic framework materials are ideal materials characterized by open frameworks, adjustable components, and high catalytic activity. They are extensively utilized for catalysis. Due to decomposition and structural collapse under high temperatures and an oxygen-rich environment, the potential of thermal catalysis is greatly limited. In this research, Co-rich hollow spheres (Co-HSs) with a gradient composition are designed and synthesized to investigate their thermal catalytic properties in the ammonium perchlorate(AP)system. The results demonstrate that Co-HSs@AP exhibits good thermal catalytic activity and a high-temperature decomposition of 292.5 °C, which is 121.6 °C lower than pure AP. The hierarchical structure confers structural stability during the thermal decomposition process. Thermogravimetry-infrared indicates that the inclusion of Co-HSs successfully boosts the level of reactive oxygen species and achieves thorough oxidation of NH3 . Based on the above phenomenon, macro dynamics calculations are carried out. The results show that Co-HSs can promote the circulation of lattice oxygen and reactive oxygen species and the multidimensional diffusion of NH3 in an oxygen-rich environment. This material has significant potential for application in the fields of thermal catalysis and ammonia oxidation.

19.
ACS Nano ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38266247

Overproduction of reactive oxygen species by damaged mitochondria after ischemia is a key factor in the subsequent cascade of damage. Delivery of therapeutic agents to the mitochondria of damaged neurons in the brain is a potentially promising targeted therapeutic strategy for the treatment of ischemic stroke. In this study, we developed a ceria nanoenzymes synergistic drug-carrying nanosystem targeting mitochondria to address multiple factors of ischemic stroke. Each component of this nanosystem works individually as well as synergistically, resulting in a comprehensive therapy. Alleviation of oxidative stress and modulation of the mitochondrial microenvironment into a favorable state for ischemic tolerance are combined to restore the ischemic microenvironment by bridging mitochondrial and multiple injuries. This work also revealed the detailed mechanisms by which the proposed nanodelivery system protects the brain, which represents a paradigm shift in ischemic stroke treatment.

20.
Chem Commun (Camb) ; 60(12): 1619-1622, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38230677

In this study, we intricately designed and synthesized two isoreticular two-dimensional covalent organic framework nanosheets, namely TAPA-COF-1 and TAPA-COF-2, distinguished by their unique spatial arrangement of hydroxyl groups. These precisely engineered nanosheets were employed as a tailored platform for the selective capture of uranium, due to their tunable chelating sites and characteristic sheet-like morphology. Notably, TAPA-COF-1, featuring ortho-hydroxyl groups, demonstrated a significantly enhanced adsorption capacity for uranium capture originating from the additional oriented adjacent phenolic hydroxyl chelating sites in comparison to TAPA-COF-2 with para-hydroxyl groups, which was proved by theoretical calculation. The impressive features of TAPA-COF-1, including its notable selectivity, rapid adsorption kinetics, and high uptake capacity (657.2 mg g-1), endow it as a highly promising candidate for uranium capture.

...